
Pythagoras: $h^{2}=x^{2}+y^{2}$
or
$h=\operatorname{sqrt}\left(x^{2}+y^{2}\right)$
So....
$x=\operatorname{sqrt}\left(h^{2}-y^{2}\right) \quad$ and
$y=\operatorname{sqrt}\left(h^{2}-x^{2}\right)$

If you have the length of two sides you can calculate the third.
$\operatorname{Sin}(\theta)=y / h \quad$ so if you know h, then $y=h * \operatorname{Sin}(\theta)$
$\operatorname{Cos}(\theta)=x / h \quad$ so if you know h, then $x=h * \cos (\theta)$
$\operatorname{Tan}(\theta)=y / x$
Can also use inverse Sin, Cos and Tan to get the angle, θ, for known lengths if required.

The importance of this basic trigonometry is that we always specify positions on screen by (x, y) co-ordinates, so, for example, if we want the length h to remain the same for given coordinates of one end and either a given x or y, we can calculate the corresponding y or x from these formulae.

